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It has been suggested that NO (nitric oxide) is stabilized and
stored by a carrier molecule that prolongs its half-life and preserves
its biological activity!=® Low molecular weight thiols, such as
cysteine and glutathione (GSH), are prime candidates for such
carrier molecules because they can foBpr{itrosothiols (RSNOSs).
These compounds are believed to be involved in many bioregulatory
functions, such as NO storage, transport, and delivery. They have
been detected in human airway-lining fluid plasma, platelet, and
neutrophils} and they are potent smooth-muscle relaxants and
inhibitors of platelet aggregation.

Previous work on the physiological chemistry 8f-fitrosothiols
indicates that they can release NO in the presence of cuprods ion,
ascorbaté,or thiols? serve as a possible source of nitroxyl (NO
ions? and can undergo transnitrosation reactioHsi1One possible
reaction of this type is protein modification by cysteine S-
nitrosation, an important mechanism for the regulation of protein
function?

Transnitrosation has been reported to be a reversible redétion,
first order in both thiol and nitrosothiol. Recently, a novel nitroxyl
disulfide intermediate of this reaction has been proposed on the
basis of electrospray ionization mass spectrometry experiments for
(9-nitrosoN-acetylpenicillamine (SNAPY, GSNO/GSH!> and
SNAP/AR (aldose reductase) systethsThe existence of the
intermediate has also been shown theoretically for a simplified
model thiol

In this work, we shed light on the reaction mechanism, providing
direct NMR spectroscopic and theoretical evidence of the elusive
proposed intermediate. We have chosen for this study a physi-
ologically relevant model of transnitrosatio®)-{itroso+-cysteine
ethyl ester (ECySNO). This compound turned out to be a good
candidate for our study because it provides a better model of a
thiol group in a protein environment; it can be isolated, and it is
relatively stable.

The transnitrosation reaction has been proposed to occur by the

mechanism shown in Scheme 1.

Scheme 1. Reaction Mechanism
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The rate-limiting step for this reaction is the nucleophilic attack
of thiolate 1 to the nitrogen atom of the-9\—0O moiety of 2.12
Therefore, the reaction rate is dependent on the reactivity of the
thiol, which is directly correlated with pH, theé<p of the sulfhydryl
group, and stereoelectronic factors in the thfol.

Kinetic measurements were obtained for the transnitrosation
reaction in water. The obtained rate constarbiss 15.64 0.2 x
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Figure 1. Optimized geometries for all species at the B3LYP/6-BGE
level of theory (selected bond lengths in A).
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Figure 2. Energy profile (in kcal/mol) for the transnitrosation reaction
between ECyS and ECySNO in vacuo (in black) and aqueous solution (in
red)

103M~1s1(26°C, pH 7.4). This value is in reasonable agreement
with other experimental values of NO transfer fro8gitrosothiols
to thiolates in aqueous solutidh.The experimental activation
energy is 22.7+ 0.3 kcal/mol (Figure SI 6 in the Supporting
Information). To our knowledge, this is the first reported value for
activation energies of transnitrosation reactions between thiols. The
activation enthalpy and entropy obtained using transition-state
theory are 22.2+ 0.9 kcal/mol and—8.5 + 3.1 cal/K mol,
respectively. Consistently with the proposed second-order rate
constant, the value of the activation entropy is significantly negative.
We have performed density functional theory calculations using
the Gaussian98 packdgeat the B3LYPS level with a 6-31%G*
basis set for the species depicted in Figure 1. Solvent effects were
modeled using the polarized continuum model (PCM) sch€me.
The calculated energy profile for this reaction in aqueous solution
and in vacuo is depicted in Figure 2. The formation of the anionic
intermediate ) in vacuo is exothermic, but in aqueous solution, it
is less favorable. The computed energy barrier of 19.4 kcal/mol is
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39257 NMR spectra of the reaction mixture, the signal corresponding to
—CHS in 1 (Figure 4A) is shifted and its ABX pattern changes,
| while a second signal with a similar pattern appears and super-
. 6 imposes with the first one (Figure 4B). By performing signal
deconvolution, we could estimate the amount of intermediate
i formed for various 1]o:[2]o ratios. We found that as the concentra-
| tion of 1is increased at a fixed concentration2pthe concentration
I of 3 increases but never reaches the fixed concentratigh(oa.
;' 'r . [3]:[2]o = 0.9 for [1]o:[2]o = 3:1), suggesting the existence of an
i w;wnwmﬁwwmwmwwﬁwm Wy equilibrium among these species.
400 300 150 1 =0

The highly relevant intermedia8eof the transnitrosation reaction

350 250 200 (1]
tppm) has been thoroughly characterized regarding its kinetic, thermo-
Figure 3. 15N NMR spectra for the reaction of ECyS with ECySNO. dynamic, spectroscopic, and structural aspects in polar solvents.

Our experimental and theoretical evidence confirms clearly the
postulated mechanism of Scheme 1 for a physiologically relevant
transnitrosation reaction between thiols.
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